
Prokaryotes and the input of polyunsaturated fatty acids to the marine food web
Author(s) -
Nichols David S.
Publication year - 2003
Publication title -
fems microbiology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.899
H-Index - 151
eISSN - 1574-6968
pISSN - 0378-1097
DOI - 10.1016/s0378-1097(02)01200-4
Subject(s) - food web , microbial loop , biology , polyunsaturated fatty acid , food chain , trophic level , ecology , microbial food web , marine bacteriophage , primary producers , nutrient , phytoplankton , bacteria , fatty acid , biochemistry , genetics
The investigation of prokaryotes in aquatic ecology is often limited to their role in nutrient cycling and the degradation of organic matter. While this aspect of the microbial loop is undoubtedly important, further aspects of bacterial roles in marine food webs exist which have not been fully considered in light of recent research in related fields. The concept of bacteria providing essential nutrients may derive importance from two aspects of their role in the marine environment; firstly as a primary food source for omnivorous, sestonivorous and filtering benthic animals and secondly as components of the commensal microbial communities of marine animals. Many marine organisms lack the de novo ability to produce n‐3 polyunsaturated fatty acids (PUFA) and hence rely on a dietary supply of PUFA. The issue of PUFA origin in the marine food web is particularly salient in light of recent research demonstrating the influence of PUFA levels on the efficiency of energy transfer between trophic levels. The assumption that microalgae provide the bulk of de novo PUFA production for all marine food webs must be actively reviewed with respect to particular microbial niches such as sea ice, marine animals and abyssal communities.