z-logo
open-access-imgOpen Access
Escape from Pluripotency via Inhibition of TGF-β/BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells
Author(s) -
Koki Fujimori,
Takuya Matsumoto,
Fumihiko Kisa,
Nobutaka Hattori,
Hideyuki Okano,
Wado Akamatsu
Publication year - 2017
Publication title -
stem cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.207
H-Index - 76
ISSN - 2213-6711
DOI - 10.1016/j.stemcr.2017.09.024
Subject(s) - induced pluripotent stem cell , biology , cellular differentiation , wnt signaling pathway , embryoid body , microbiology and biotechnology , directed differentiation , germ layer , regenerative medicine , embryonic stem cell , stem cell , signal transduction , genetics , gene
Human pluripotent stem cells (hPSCs) represent a potentially valuable cell source for applications in cell replacement therapy, drug development, and disease modeling. For all these uses, it is necessary to develop reproducible and robust protocols for differentiation into desired cell types. However, differentiation protocols remain unstable and inefficient, which makes minimizing the differentiation variance among hPSC lines and obtaining purified terminally differentiated cells extremely time consuming. Here, we report a simple treatment with three small molecules-SB431542, dorsomorphine, and CHIR99021-that enhanced hPSC differentiation into three germ layers with a chemically transitional embryoid-body-like state (CTraS). Induction of CTraS reduced the innate differentiation propensities of hPSCs (even unfavorably differentiated hPSCs) and shifted their differentiation into terminally differentiated cells, particularly neurons. In addition, CTraS induction accelerated in vitro pathological expression concurrently with neural maturation. Thus, CTraS can promote the latent potential of hPSCs for differentiation and potentially expand the utility and applicability of hPSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom