z-logo
open-access-imgOpen Access
The Theory of Critical Distances to estimate static and dynamic strength of notched plain concrete
Author(s) -
Iason Pelekis,
Luca Susmel
Publication year - 2016
Publication title -
procedia structural integrity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 18
ISSN - 2452-3216
DOI - 10.1016/j.prostr.2016.06.252
Subject(s) - structural engineering , displacement (psychology) , stress (linguistics) , reliability (semiconductor) , engineering , physics , psychology , linguistics , philosophy , power (physics) , quantum mechanics , psychotherapist
The Theory of Critical Distances (TCD) is a well-known design method allowing the strength of notched/cracked components to be estimated accurately by directly post-processing the entire linear-elastic stress fields damaging the material in the vicinity of the stress concentrators being designed. By taking full advantage of the TCD’s unique features, in the present study this powerful theory was reformulated to make it suitable for designing notched plain concrete against static and dynamic loading. The accuracy and reliability of the proposed reformulation of the TCD was checked against a set of experimental results generated by testing, under different displacement rates, square section beams of plain concrete containing notches of different sharpness. This validation exercise has demonstrated that the proposed reformulation of the TCD is capable of accurately assessing the static and dynamic strength of notched unreinforced concrete, with the estimates falling within an error interval of ±20%. The level of accuracy that was obtained is certainly satisfactory, especially in light of the fact that static and dynamic strength was estimated without explicitly modelling the stress vs. strain dynamic behaviour of the concrete being tested

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom