z-logo
open-access-imgOpen Access
The use of SE(T) specimen fracture toughness for FFS assessment of defects in low constraint conditions
Author(s) -
Jiajun Han,
N.O. Larrosa,
R.A. Ainsworth,
Y.-J. Kim
Publication year - 2016
Publication title -
procedia structural integrity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 18
ISSN - 2452-3216
DOI - 10.1016/j.prostr.2016.06.218
Subject(s) - fracture toughness , materials science , constraint (computer aided design) , fracture (geology) , composite material , structural engineering , toughness , parametric statistics , fracture mechanics , tearing , mathematics , geometry , engineering , statistics
Due to the loss of constraint, shallow cracked specimens can ‘absorb’ more energy than deeply cracked specimens commonly used to define the critical value to fracture and therefore exhibit a higher fracture toughness. The increase in energy absorption allows a reduction in the inherent conservatism when assessing components in low constraint conditions. This study addresses the benefit of using shallow cracked SE(T) fracture toughness specimens in fitness for service (FFS) assessment of defects under low constraint conditions, e.g. blunt defects or shallow cracks. Tearing resistance curves (J-R curves) have been constructed by means of a virtual test framework to determine crack initiation and propagation for shallow cracked SE(T) specimens and parametric notched C(T) specimens. The effect of constraint level on J-R curves is compared. It is observed that most of the blunted C(T) specimens analysed exhibit the same or a lower toughness value than that of a shallow cracked SE(T) specimen. The results are used to show how reduced conservatism can be made in defect assessment of blunt defects or in cases in which reduced constraint conditions can be demonstrated

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom