z-logo
open-access-imgOpen Access
Temporal Role Annotation for Named Entities
Author(s) -
Maria Koutraki,
Farshad Bakhshandegan-Moghaddam,
Harald Sack
Publication year - 2018
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2018.09.021
Subject(s) - computer science , ambiguity , conditional random field , natural language processing , context (archaeology) , task (project management) , information extraction , artificial intelligence , annotation , information retrieval , natural language , set (abstract data type) , focus (optics) , key (lock) , domain (mathematical analysis) , feature (linguistics) , physics , computer security , management , mathematics , optics , economics , biology , programming language , linguistics , philosophy , paleontology , mathematical analysis
Natural language understanding tasks are key to extracting structured and semantic information from text. One of the most challenging problems in natural language is ambiguity and resolving such ambiguity based on context including temporal information. This paper, focuses on the task of extracting temporal roles from text, e.g. CEO of an organization or head of a state. A temporal role has a domain, which may resolve to different entities depending on the context and especially on temporal information, e.g. CEO of Microsoft in 2000. We focus on the temporal role extraction, as a precursor for temporal role disambiguation. We propose a structured prediction approach based on Conditional Random Fields (CRF) to annotate temporal roles in text and rely on a rich feature set, which extracts syntactic and semantic information from text. We perform an extensive evaluation of our approach based on two datasets. In the first dataset, we extract nearly 400k instances from Wikipedia through distant supervision, whereas in the second dataset, a manually curated ground-truth consisting of 200 instances is extracted from a sample of The New York Times (NYT) articles. Last, the proposed approach is compared against baselines where significant improvements are shown for both datasets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom