SegChainW2V: Towards a Generic Automatic Video Segmentation Framework, Based on Lexical Chains of Audio Transcriptions and Word Embeddings
Author(s) -
Adrian-Gabriel Chifu,
Sébastien Fournier
Publication year - 2016
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2016.08.182
Subject(s) - computer science , segmentation , variety (cybernetics) , context (archaeology) , embedding , semantics (computer science) , vectorization (mathematics) , natural language processing , word embedding , broadcasting (networking) , artificial intelligence , word (group theory) , multimedia , linguistics , philosophy , paleontology , computer network , parallel computing , biology , programming language
With the advances in multimedia broadcasting through a rich variety of channels and with the vulgarization of video production, it becomes essential to be able to provide reliable means of retrieving information within videos, not only the videos themselves. Research in this area has been widely focused on the context of TV news broadcasts, for which the structure itself provides clues for story segmentation. The systematic employment of these clues would lead to thematically driven systems that would not be easily adaptable in the case of videos of other types. The systems are therefore dependent on the type of videos for which they have been designed. In this paper we aim at introducing SegChainW2V, a generic unsupervised framework for story segmentation, based on lexical chains from transcriptions and their vectorization. SegChainW2V takes into account the topic changes by perceiving the fiuctuations of the most frequent terms throughout the video, as well as their semantics through the word embedding vectorization
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom