z-logo
open-access-imgOpen Access
Tabu Search for Partitioning Dynamic Dataflow Programs
Author(s) -
Małgorzata Michalska,
Nicolas Zufferey,
Marco Mattavelli
Publication year - 2016
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2016.05.486
Subject(s) - dataflow , computer science , tabu search , profiling (computer programming) , data flow analysis , parallel computing , metaheuristic , dataflow architecture , consistency (knowledge bases) , data flow diagram , algorithm , programming language , artificial intelligence , database
An important challenge of dataflow programming is the problem of partitioning dataflow components onto a target architecture. A common objective function associated to this problem is to find the maximum data processing throughput. This NP-complete problem is very difficult to solve with high quality close-to-optimal solutions for the very large size of the design space and the possibly large variability of input data. This paper introduces four variants of the tabu search metaheuristic expressly developed for partitioning components of a dataflow program. The approach relies on the use of a simulation tool, capable of estimating the performance for any partitioning configuration exploiting a model of the target architecture and the profiling results. The partitioning solutions generated with tabu search are validated for consistency and high accuracy with experimental platform executions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom