An Evaluation of Data Stream Processing Systems for Data Driven Applications
Author(s) -
Jonathan Samosir,
Maria Indrawan,
Pari Delir Haghighi
Publication year - 2016
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2016.05.322
Subject(s) - computer science , spark (programming language) , pipeline (software) , stream processing , streaming data , data stream , data stream mining , data processing , real time computing , data mining , database , distributed computing , operating system , telecommunications , programming language
Real-time data stream processing technologies play an important role in enabling time-critical decision making in many applications. This paper aims at evaluating the performance of platforms that are capable of processing streaming data. Candidate technologies include Storm, Samza, and Spark Streaming. To form the recommendation, a prototype pipeline is designed and implemented in each of the platforms using data collected from sensors used in monitoring heavy-haul railway systems. Through the testing and evaluation of each candidate platform, using both quantitative and qualitative metrics, the paper describes the findings, where Storm is found to be the most appropriate candidate
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom