z-logo
open-access-imgOpen Access
Towards Identifying Performance Anomalies
Author(s) -
Haroon Malik,
Elhadi Shakshuki
Publication year - 2016
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2016.04.140
Subject(s) - computer science , pace , benchmark (surveying) , information overload , domain (mathematical analysis) , software , entropy (arrow of time) , data science , data mining , world wide web , operating system , mathematical analysis , physics , mathematics , geodesy , quantum mechanics , geography
Large-scale-software systems (LSSs) are composed of hundreds of subsystems that interact with each other in an unforeseen and complex ways. The operators of these LSSs strictly monitor thousands of metrics (performance counters) to quickly identify performance anomalies before a catastrophe. The existing monitoring tools and methodologies have not kept in pace with the rapid growth and inherit complexity of these LSSs; hence are ineffective in assisting practitioners to effectively pinpoint performance anomalies. We propose a methodology that uses entropy analysis to assist practitioners/operators of LSSs in quickly detecting underlying anomalies in the system. Our performance tests conducted on an open source benchmark system reveal that the proposed methodology is robust in pinpointing anomalies, do not require any domain knowledge to operate, and avoid information overload on practitioners

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom