z-logo
open-access-imgOpen Access
Central and Distributed GPU based Parallel Disk Systems for Data Intensive Applications
Author(s) -
Mais Nijim,
Soumya Saha,
Y.W. Nijim
Publication year - 2014
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2014.07.034
Subject(s) - computer science , scalability , reliability (semiconductor) , parallel computing , workload , cuda , graphics , distributed computing , power (physics) , operating system , physics , quantum mechanics
Parallel disk systems are capable of fulfilling rapidly increasing demands on both large storage capacity and high I/O performance. However, it is challenging to significantly increase disk I/O bandwidth for data-intensive workloads due to (1) reliability and instant processing of data requests under dynamic workload conditions, and (2) the optimum tradeoff between system scalability and data reliability in data-intensive systems. To increase computing performance and reduce power consumption, Graphics Processing Units (GPUs) will be used. As the architectures and data processing algorithms for GPU-based parallel disk systems are still in their infancy, this research will develop novel hardware and software architectures that include parallel GPU, flash disks, and disk arrays for data-intensive applications

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom