An Out-of-core GPU Approach for Accelerating Geostatistical Interpolation
Author(s) -
Victor Allombert,
David Michéa,
Fabrice Dupros,
Christian Bellier,
Bernard Bourgine,
Hideo Aochi,
Sylvain Jubertie
Publication year - 2014
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2014.05.080
Subject(s) - computer science , interpolation (computer graphics) , kriging , software , computational science , implementation , multivariate interpolation , acceleration , graphics , data mining , computer engineering , algorithm , computer graphics (images) , software engineering , machine learning , bilinear interpolation , animation , physics , classical mechanics , computer vision , programming language
Geostatistical methods provide a powerful tool to understand the complexity of data arising from Earth sciences. Since the mid 70's, this numerical approach is widely used to understand the spatial variation of natural phenomena in various domains like Oil and Gas, Mining or Environmental Industries. Considering the huge amount of data available, standard implementations of these numerical methods are not efficient enough to tackle current challenges in geosciences. Moreover, most of the software packages available for geostatisticians are designed for a usage on a desktop computer due to the trial and error procedure used during the interpolation. The Geological Data Management (GDM) software package developed by the French geological survey (BRGM) is widely used to build reliable three-dimensional geological models that require a large amount of memory and computing resources. Considering the most time-consuming phase of kriging methodology, we introduce an efficient out-of-core algorithm that fully benefits from graphics cards acceleration on desktop computer. This way we are able to accelerate kriging on GPU with data 4 times bigger than a classical in-core GPU algorithm, with a limited loss of performances
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom