z-logo
open-access-imgOpen Access
Data Parallel Skeletons in Java
Author(s) -
Herbert Kuchen,
Steffen Ernsting
Publication year - 2012
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2012.04.200
Subject(s) - computer science , java , scalability , parallel computing , programmer , java concurrency , programming paradigm , real time java , distributed computing , programming language , operating system
In the past years, multi-core processors and clusters of multi-core processors have emerged to be promising approaches to meet the growing demand for computing performance. They deliver scalable performance, certainly at the costs of tedious and complex parallel programming. Due to a lack of high-level abstractions, developers of parallel applications have to deal with low-level details such as coordinating threads or synchronizing processes. Thus, parallel programming still remains a dificult and error-prone task. In order to shield the programmer from these low–level details, algorithmic skeletons have been proposed. They encapsulate typical parallel programming patterns and have emerged to be an effcient and scalable approach to simplifying the development of parallel applications. In this paper, we present a Java binding of our skeleton library Muesli. We point out strengths and weaknesses of Java with respect to parallel and distributed computing. A matrix multiplication benchmark demonstrates that the Java Generics deliver poor performance, thus the Java implementation is unable to compete with the C++ implementation in terms of performance

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom