z-logo
open-access-imgOpen Access
Credit risk evaluation modeling using evolutionary linear SVM classifiers and sliding window approach
Author(s) -
Paulius Danėnas,
Gintautas Garšva
Publication year - 2012
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2012.04.145
Subject(s) - computer science , support vector machine , sliding window protocol , artificial intelligence , machine learning , data mining , window (computing) , operating system
This paper presents a study on credit risk evaluation modeling using linear Support Vector Machines (SVM) classifiers, combined with evolutionary parameter selection using Genetic Algorithms and Particle Swarm Optimization, and sliding window approach. Discriminant analysis was applied for evaluation of financial instances and dynamic formation of bankruptcy classes. The possibilities of feature selection application were also researched by applying correlation-based feature subset evaluator. The research demonstrates a possibility to develop and apply an intelligent classifier based on original discriminant analysis method evaluation and shows that it might perform bankruptcy identification better than original model

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom