z-logo
open-access-imgOpen Access
Genetic & Evolutionary Biometric Security: Disposable Feature Extractors for Mitigating Biometric Replay Attacks
Author(s) -
Joseph Shelton,
Kelvin Bryant,
Sheldon Abrams,
Lasanio Small,
Joshua Adams,
Derrick Leflore,
Aniesha Alford,
Karl Ricanek,
Gerry Dozier
Publication year - 2012
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2012.01.072
Subject(s) - replay attack , biometrics , computer science , access control , feature (linguistics) , computer security , authentication (law) , genetic algorithm , artificial intelligence , machine learning , philosophy , linguistics
Biometric-based access control systems (BACSs) are vulnerable to replay attacks. Replay attacks occur when a biometric template is intercepted and maliciously used to gain unauthorized access to a system. In this paper, we introduce a Genetic and Evolutionary Biometric Security (GEBS) application which uses a Genetic and Evolutionary Computation to develop disposable Feature Extractors (FEs) in an effort to mitigate replay attacks. We describe how a previously developed system known as GEFE (Genetic and Evolutionary Feature Extraction) can be used to evolve unique and disposable FEs for users of BACS. Furthermore, we propose two access control protocols based on the use of disposable FEs and/or their resulting templates (also referred to as feature vectors (FVs)). In our proposed protocols, FEs/FVs are used to authenticate the identity of individuals and are then discarded. Our results show that this GEBS application can be successfully used to mitigate biometric replay attacks

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom