z-logo
open-access-imgOpen Access
Simulating the Influence of Ca on the Na Channel Excitability
Author(s) -
Iren Valova,
Natacha Gueorguieva,
George Gueorguiev,
Vyacheslav Glukh
Publication year - 2011
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2011.08.059
Subject(s) - computer science , confusion , channel (broadcasting) , neuroscience , biological system , neuron , brain function , function (biology) , telecommunications , biology , psychology , evolutionary biology , psychoanalysis
Information processing in the brain results from the spread and interaction of electrical and chemical signals within and among neurons. The equations that describe brain dynamics generally do not have analytical solutions. The recent expansion in the use of simulation tools in the field of neuroscience has been encouraged by the rapid growth of quantitative observations that both stimulate and constrain the formulation of new hypotheses of neuronal function. The purpose of this research is to study, simulate and analyze the influence of Ca concentration on the Na channel. Ca deviation from its normal levels show major clinical problems resulting from the decreased (increased) excitability of neurons as fatigue, depression, confusion, cardiac arrhythmias etc. become evident. We simulate the sensitivity of the Na channel to the concentration of Ca and its “stabilizing” effect on nerve and muscle excitability. Our research is based on Hodgkin and Huxley research, Moore-Cox model of the Na channel as well as NEURON simulation environment. The latter is a powerful and flexible tool for implementing biologically realistic models of electrical and chemical signalling in neurons while adding the necessary expansion and modifications required by the stated goals

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom