A multiagent framework for industrial robotic applications
Author(s) -
Marko Švaco,
Bojan Šekoranja,
Bojan Jerbić
Publication year - 2011
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2011.08.054
Subject(s) - computer science , flexibility (engineering) , distributed computing , actuator , multi agent system , fault tolerance , robot , control engineering , artificial intelligence , statistics , engineering , mathematics
The paper presents a novel approach toward modeling and governing complex system behavior in flexible and adaptive robotic assembly systems. A fully distributed multiagent approach is implemented for autonomous control. The system is defined at multiple levels of granularity where agents provide services in respect to the current global goal. A decentralized multiagent approach is adopted for reasons of flexibility and fault tolerance embedded in the design phase. To prove the concept a robotic application for intelligent assembly is presented and discussed. It consists of multiple industrial robots equipped with force/torque sensors, 2D and 3D vision systems, automatic tool changers and other sensors and actuators. Through fusion of sensory input and mutual communication agents construct and negotiate an assembly plan and reconfigure respectively
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom