Robust Gene Expression Programming
Author(s) -
Noah Ryan,
David Hibler
Publication year - 2011
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2011.08.032
Subject(s) - computer science , genetic programming , gene expression programming , representation (politics) , genetic representation , evolutionary programming , genetic algorithm , expression (computer science) , linear programming , evolutionary algorithm , artificial intelligence , theoretical computer science , mathematical optimization , algorithm , machine learning , mathematics , programming language , politics , political science , law
Genetic/evolutionary methods are frequently used to deal with complex adaptive systems. The classic example is a Genetic Algorithm. A Genetic Algorithm uses a simple linear representation for possible solutions to a problem. This is usually a bit vector. Unfortunately, the natural representation for many problems is a tree structure. In order to deal with these types of problems many evolutionary methods make use of tree structures directly. Gene Expression Programming is a new, popular evolutionary technique that deals with these types of problems by using a linear representation for trees. In this paper we present and evaluate Robust Gene Expression Programming (RGEP). This technique is a simplification of Gene Expression Programming that is equally efficient and powerful. The underlying representation of a solution to a problem in RGEP is a bit vector as in Genetic Algorithms. It has fewer and simpler operators than those of Gene Expression Programming. We describe the basic technique, discuss its advantages over related methods, and evaluate its effectiveness on example problems
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom