z-logo
open-access-imgOpen Access
ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI
Author(s) -
Chih-Ning Huang,
Chia-Tai Chan
Publication year - 2011
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2011.07.010
Subject(s) - computer science , scalability , wireless sensor network , received signal strength indication , node (physics) , path (computing) , wireless , computer network , k nearest neighbors algorithm , signal strength , routing (electronic design automation) , real time computing , algorithm , topology (electrical circuits) , telecommunications , artificial intelligence , database , mathematics , structural engineering , combinatorics , engineering
With the advances in information and communication technologies, wireless sensor networks has made Ambient Intelligence (AmI) applications possible that can monitor the situation around the persons or objects and give certain responses for their needs. The location awareness is an important technology for AmI applications. The advantages of ZigBee wireless sensor networks such as low cost, high scalability, high availability and supporting dynamic routing topology make ZigBee more suitable for indoor location system. In this research, we propose a ZigBEe-bAsed indoor loCatiON (ZigBEACON) system for the AmI applications. The proposed approach is based on the k-nearest neighbor algorithm. According to the Received Signal Strength Indication's (RSSI) path loss distribution, the RSSI values are defined into four classes. The signals that belong to different classes will be adjusted by the different ratio and will be referred to as weighted RSSI. The use of weighted RSSI can effectively choose the p-nearest reference nodes. Finally, the position of mobile node would be derived by calculating the coordinates of pnearest reference nodes. Comparing the results with that of ZigBee-based LANDMARC system, our approach has 29% improvement on average error distance. The approach not only improves the accuracy, but also provides less calculation complexity than other improvement methods of LANDMARC. The ZigBEACON approach is an adequate solution to the indoor location system for AmI applications

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom