z-logo
open-access-imgOpen Access
Query-driven Multiscale Data Postprocessing in Computational Fluid Dynamics
Author(s) -
Atanas Atanasov,
Tobias Weinzierl
Publication year - 2011
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2011.04.035
Subject(s) - computer science , computational fluid dynamics , dynamics (music) , computational science , data mining , mechanics , physics , acoustics
Massively parallel computational uid dynamics codes that have to stream solution data to a visualisation or postprocessing component in each time step often are IO-bounded. This is especially cumbersome if the succeeding components require the simulation data only in a coarse resolution or only in specific subregions. We suggest to replace the streaming data approach found in many applications with a query-driven communication paradigm where the postprocessing components explicitly inform the uid solver which data they need in which resolution in which subregions. Two case studies reveal that such a data exchange paradigm reduces the memory footprint of the exchanged data as well as the latency of the data delivery, and that the approach scales. In particular geometric multigrid solvers based upon a non-overlapping domain decomposition can answer such queries efficiently

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom