z-logo
open-access-imgOpen Access
Simplifying and improving ant-based clustering
Author(s) -
Swee Chuan Tan,
Kai Ming Ting,
Shyh Wei Teng
Publication year - 2011
Publication title -
procedia computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.334
H-Index - 76
ISSN - 1877-0509
DOI - 10.1016/j.procs.2011.04.006
Subject(s) - computer science , cluster analysis , heuristics , ant colony , artificial intelligence , key (lock) , premise , swarm intelligence , ant colony optimization algorithms , state (computer science) , data mining , machine learning , algorithm , computer security , linguistics , philosophy , particle swarm optimization , operating system
Ant-based clustering (ABC) is a data clustering approach inspired from cemetery formation activities observed in real ant colonies. Building upon the premise of collective intelligence, such an approach uses multiple ant-like agents and a mixture of heuristics, in order to create systems that are capable of clustering real-world data. Many recently proposed ABC systems have shown competitive results, but these systems are geared towards adding new heuristics, resulting in increasingly complex systems that are harder to understand and improve. In contrast to this direction, we demonstrate that a state-of-the-art ABC system can be systematically evaluated and then simplified. The streamlined model, which we call SABC, differs fundamentally from traditional ABC systems as it does not use the ant-colony and several key components. Yet, our empirical study shows that SABC performs more effectively and effciently than the state-of-the-art ABC system

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom