Progress on the Upgrade of the CMS Hadron Calorimeter Front-End Electronics
Author(s) -
Jake Anderson,
J. Freeman,
Juliana Whitmore
Publication year - 2012
Publication title -
physics procedia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.26
H-Index - 61
ISSN - 1875-3892
DOI - 10.1016/j.phpro.2012.03.708
Subject(s) - upgrade , electronics , computer science , application specific integrated circuit , front and back ends , large hadron collider , field programmable gate array , detector , embedded system , computer hardware , electrical engineering , physics , telecommunications , engineering , operating system , nuclear physics
We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 1034cm-2 s-1) and an expected integrated luminosity of ∼3000 fb-1. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on the proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a high radiation/high magnetic field environment and are constrained by the existing infrastructure (existing on-detector custom crates, legacy optical fiber, existing water cooling plant, tight trigger latency requirement). The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom