Numerical solution of time-dependent diffusion equations with nonlocal boundary conditions via a fast matrix approach
Author(s) -
Emran Tohidi,
F. Toutounian
Publication year - 2014
Publication title -
journal of the egyptian mathematical society
Language(s) - English
Resource type - Journals
eISSN - 2090-9128
pISSN - 1110-256X
DOI - 10.1016/j.joems.2014.06.018
Subject(s) - mathematics , krylov subspace , boundary value problem , algebraic equation , matrix (chemical analysis) , partial differential equation , mathematical analysis , iterative method , algebraic number , mathematical optimization , physics , materials science , nonlinear system , quantum mechanics , composite material
This article contributes a matrix approach by using Taylor approximation to obtain the numerical solution of one-dimensional time-dependent parabolic partial differential equations (PDEs) subject to nonlocal boundary integral conditions. We first impose the initial and boundary conditions to the main problems and then reach to the associated integro-PDEs. By using operational matrices and also the completeness of the monomials basis, the obtained integro-PDEs will be reduced to the generalized Sylvester equations. For solving these algebraic systems, we apply a famous technique in Krylov subspace iterative methods. A numerical example is considered to show the efficiency of the proposed idea
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom