Tuning hyperthermia efficiency of MnFe2O4/ZnS nanocomposites by controlled ZnS concentration
Author(s) -
D.K. Mondal,
C. Borgohain,
Nibedita Paul,
J. P. Borah
Publication year - 2019
Publication title -
journal of materials research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.832
H-Index - 44
eISSN - 2214-0697
pISSN - 2238-7854
DOI - 10.1016/j.jmrt.2019.09.034
Subject(s) - materials science , nanocomposite , high resolution transmission electron microscopy , photoluminescence , fourier transform infrared spectroscopy , spinel , chemical engineering , analytical chemistry (journal) , band gap , nanoparticle , nanotechnology , transmission electron microscopy , optoelectronics , metallurgy , organic chemistry , chemistry , engineering
Magneto-fluorescence MnFe2O4/ZnS nanocomposite with varying ZnS concentration were successfully synthesized by co-precipitation method. Its structural, morphological, optical and magnetic properties are comprehensively characterized by XRD, HRTEM, FTIR, UV-Vis, Photoluminescence (PL) spectroscopy and VSM techniques. XRD Results indicates that the prepared nanocomposite comprises of cubic Spinel structure of MnFe2O4 and cubic zinc blende structure of ZnS. FTIR analysis exhibits conjugation of ZnS with surface of MnFe2O4 nanoparticles through surfactant PEG. The photoluminescence study shows the shifting of emission peaks due to strong quantum confinement effect and the absorption spectra shows the trend of increasing band gap with increasing concentration of ZnS. Room temperature magnetic study shows that the saturation magnetization increases with increasing ZnS concentration. The prepared nanocomposite investigated for hyperthermia application at different concentration of ZnS. The result infer that the nanocomposite is a promising material for hyperthermia and also heating efficiency can be tuned by changing the ZnS concentration in the MnFe2O4/ZnS nanocomposite.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom