An algorithm for estimating surface normal from its boundary curves
Author(s) -
Jisoon Park,
Tae-Won Kim,
Stephen Baek,
Kunwoo Lee
Publication year - 2014
Publication title -
journal of computational design and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.764
H-Index - 24
eISSN - 2288-5048
pISSN - 2288-4300
DOI - 10.1016/j.jcde.2014.11.007
Subject(s) - sketch , algorithm , surface (topology) , boundary (topology) , rotation (mathematics) , frame (networking) , process (computing) , energy (signal processing) , geometric modeling , computer science , mathematics , geometry , mathematical optimization , mathematical analysis , telecommunications , statistics , operating system
Recently, along with the improvements of geometry modeling methods using sketch-based interface, there have been a lot of developments in research about generating surface model from 3D curves. However, surfacing a 3D curve network remains an ambiguous problem due to the lack of geometric information. In this paper, we propose a new algorithm for estimating the normal vectors of the 3D curves which accord closely with user intent. Bending energy is defined by utilizing RMF(Rotation-Minimizing Frame) of 3D curve, and we estimated this minimal energy frame as the one that accords design intent. The proposed algorithm is demonstrated with surface model creation of various curve networks. The algorithm of estimating geometric information in 3D curves which is proposed in this paper can be utilized to extract new information in the sketch-based modeling process. Also, a new framework of 3D modeling can be expected through the fusion between curve network and surface creating algorithm
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom