z-logo
open-access-imgOpen Access
Probing Akt-inhibitor interaction by chemical cross-linking and mass spectrometry
Author(s) -
Boji Huang,
HeeYong Kim
Publication year - 2009
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1016/j.jasms.2009.04.004
Subject(s) - protein kinase b , chemistry , phosphorylation , protein kinase domain , threonine , pi3k/akt/mtor pathway , biochemistry , serine , microbiology and biotechnology , biophysics , signal transduction , biology , mutant , gene
The serine/threonine kinase Akt is a critical enzyme that regulates cell survival. As high Akt activity has been shown to contribute to the pathogenesis of various human malignancies, inhibition of Akt activation is a promising therapeutic strategy for cancers. We have previously demonstrated that changes in Akt interdomain arrangements from a closed to open conformation occur upon Akt-membrane interaction, which in turn allows Akt phosphorylation/activation. In the present study, we demonstrate a novel strategy to discern mechanisms for Akt inhibition based on Akt conformational changes using chemical cross-linking and (18)O labeling mass spectrometry. By quantitative comparison of two interdomain cross-linked peptides, which represent the proximity of the domains involved, we found that the binding of Akt to an inhibitor (PI analog) caused the open interdomain conformation where the PH and regulatory domains moved away from the kinase domain, even before interacting with membranes, subsequently preventing translocation of Akt to the plasma membrane. In contrast, the interdomain conformation remained unchanged after incubating with another type of inhibitor (peptide TCL1). Subsequent interaction with unilamellar vesicles suggested that TCL1 impaired particularly the opening of the PH domain for exposing T308 for phosphorylation at the plasma membrane. This novel approach based on the conformation-based molecular interaction mechanism should be potentially useful for drug discovery efforts for specific Akt inhibitors or anti-tumor agents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here