z-logo
open-access-imgOpen Access
Measurement of neuropeptides in crustacean hemolymph via MALDI mass spectrometry
Author(s) -
Ruibing Chen,
Mingming Ma,
Limei Hui,
Jiang Zhang,
Lingjun Li
Publication year - 2009
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1016/j.jasms.2008.12.007
Subject(s) - hemolymph , neuropeptide , peptide , chemistry , biochemistry , peptide hormone , biology , hormone , receptor
Neuropeptides are often released into circulatory fluid (hemolymph) to act as circulating hormones and regulate many physiological processes. However, the detection of these low-level peptide hormones in circulation is often complicated by high salt interference and rapid degradation of proteins and peptides in crude hemolymph extracts. In this study, we systematically evaluated three different neuropeptide extraction protocols and developed a simple and effective hemolymph preparation method suitable for MALDI MS profiling of neuropeptides by combining acid-induced abundant protein precipitation/depletion, ultrafiltration, and C(18) micro-column desalting. In hemolymph samples collected from the crab Cancer borealis, several secreted neuropeptides have been detected, including members from at least five neuropeptide families, such as RFamide, allatostatin, orcokinin, tachykinin-related peptide (TRP), and crustacean cardioactive peptide (CCAP). Furthermore, two TRPs were detected in the hemolymph collected from food-deprived animals, suggesting the potential role of these neuropeptides in feeding regulation. In addition, a novel peptide with a Lys-Phe-amide C-terminus was identified and de novo sequenced directly from the Cancer borealis hemolymph sample. To better characterize the hemolymph peptidome, we also identified several abundant peptide signals in C. borealis hemolymph that were assigned to protein degradation products. Collectively, our study describes a simple and effective sample preparation method for neuropeptide analysis directly from crude crustacean hemolymph. Numerous endogenous neuropeptides were detected, including both known ones and new peptides whose functions remain to be characterized.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here