
Mechanisms for the proton mobility-dependent gas-phase fragmentation reactions of S-alkyl cysteine sulfoxide-containing peptide ions
Author(s) -
Jennifer M. Froelich,
Gavin E. Reid
Publication year - 2007
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1016/j.jasms.2007.06.014
Subject(s) - chemistry , fragmentation (computing) , alkyl , sulfoxide , peptide , gas phase , cysteine , ion , proton , dimethyl sulfoxide , proton affinity , photochemistry , organic chemistry , biochemistry , enzyme , physics , protonation , quantum mechanics , computer science , operating system
Mechanisms for the gas-phase fragmentation reactions of singly and multiply protonated precursor ions of the model S-alkyl cysteine sulfoxide-containing peptides GAILCGAILK, GAILCGAILR, and VTMGHFCNFGK prepared by reaction with iodomethane, iodoacetamide, iodoacetic acid, acrylamide, or 4-vinylpyridine, followed by oxidation with hydrogen peroxide, as well as peptides obtained from an S-carboxyamidomethylated and oxidized tryptic digest of bovine serum albumin, have been examined using multistage tandem mass spectrometry, hydrogen/deuterium exchange and molecular orbital calculations (at the B3LYP/6-31 + G(d,p) level of theory). Consistent with previous reports, CID-MS/MS of the S-alkyl cysteine sulfoxide-containing peptide ions resulted in the dominant "non-sequence" neutral loss of an alkyl sulfenic acid (XSOH) from the modified cysteine side chains under conditions of low proton mobility, irrespective of the alkylating reagent employed. Dissociation of uniformly deuterated precursor ions of these model peptides determined that the loss of alkyl sulfenic acid in each case occurred via a "charge-remote" five-centered cis-1,2 elimination reaction to yield a dehydroalanine-containing product ion. Similarly, the charge state dependence to the mechanisms and product ion structures for the losses of CO(2), CO(2) + H(2)O and CO(2) + CH(2)O from S-carboxymethyl cysteine sulfoxide-containing peptides, and for the losses of CH(2)CHCONH(2) and CH(2)CHC(5)H(4)N, respectively, from S-amidoethyl and S-pyridylethyl cysteine sulfoxide-containing peptide ions have also been determined. The results from these studies indicate that both the proton mobility of the peptide precursor ion and the nature of the S-alkyl substituent have a significant influence on the abundances and charge states of the product ions resulting from the various competing fragmentation pathways.