
Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer
Author(s) -
Alexander Makarov,
Eduard Denisov,
Oliver Lange,
Stevan Horning
Publication year - 2006
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1016/j.jasms.2006.03.006
Subject(s) - orbitrap , chemistry , mass spectrometry , ion trap , ion , dynamic range , hybrid mass spectrometer , quadrupole ion trap , analytical chemistry (journal) , range (aeronautics) , spectrum analyzer , optics , selected reaction monitoring , chromatography , tandem mass spectrometry , physics , materials science , organic chemistry , composite material
Using a novel orbitrap mass spectrometer, the authors investigate the dynamic range over which accurate masses can be determined (extent of mass accuracy) for short duration experiments typical for LC/MS. A linear ion trap is used to selectively fill an intermediate ion storage device (C-trap) with ions of interest, following which the ensemble of ions is injected into an orbitrap mass analyzer and analyzed using image current detection and fast Fourier transformation. Using this technique, it is possible to generate ion populations with intraspectrum intensity ranges up to 10(4). All measurements (including ion accumulation and image current detection) were performed in less than 1 s at a resolving power of 30,000. It was shown that 5-ppm mass accuracy of the orbitrap mass analyzer is reached with >95% probability at a dynamic range of more than 5000, which is at least an order of magnitude higher than typical values for time-of-flight instruments. Due to the high resolving power of the orbitrap, accurate mass of an ion could be determined when the signal was reliably distinguished from noise (S/Np-p)>2...3).