z-logo
open-access-imgOpen Access
Analyzing the temporal regulation of translation efficiency in mouse liver
Author(s) -
Peggy Janich,
Alaaddin Bulak Arpat,
Violeta Castelo-Szekely,
David Gatfield
Publication year - 2016
Publication title -
genomics data
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.549
H-Index - 20
ISSN - 2213-5960
DOI - 10.1016/j.gdata.2016.03.004
Subject(s) - ribosome profiling , biology , ribosome biogenesis , transcriptome , translation (biology) , computational biology , ribosome , gene expression , gene , gene expression profiling , messenger rna , protein biosynthesis , microbiology and biotechnology , genetics , bioinformatics , rna
Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013) [1]). We have recently reported on the use of ribosome profiling (RPF-seq), a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore the temporal regulation of translation efficiency (Janich et al., 2015 [2]). Through the comparison of around-the-clock RPF-seq and matching RNA-seq data we were able to identify 150 genes, involved in ribosome biogenesis, iron metabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthesis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE67305. Here we provide additional information on the experimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse liver and to data analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom