z-logo
open-access-imgOpen Access
Carbon source dependent phosphorylation of the Gpr1 protein in the yeast Yarrowia lipolytica
Author(s) -
Gentsch Marcus,
Barth Gerold
Publication year - 2005
Publication title -
fems yeast research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 92
eISSN - 1567-1364
pISSN - 1567-1356
DOI - 10.1016/j.femsyr.2005.04.009
Subject(s) - dephosphorylation , phosphorylation , yarrowia , biology , yeast , serine , biochemistry , acetic acid , protein phosphorylation , phosphatase , protein kinase a
The Gpr1 protein of the ascomycetous yeast Yarrowia lipolytica belongs to the poorly characterised Gpr1/Fun34/YaaH protein family whose members have been only found in prokaryotes and lower eukaryotes so far. Gpr1p seems to be involved in acetic acid adaptation at low pH values. Here we show that Gpr1p is subjected to phosphorylation in dependence on the carbon source. Exhaustion of the carbon source resulted in a complete dephosphorylation of Gpr1p, whereas addition of a new carbon source caused the phosphorylation of Gpr1p. Almost all Gpr1p molecules became phosphorylated after addition of acetate, while other carbon sources only triggered the phosphorylation of about half of the Gpr1p molecules. Phosphorylation was found to occur at serine‐37. In spite of the clear effect of acetate/acetic acid on the level of phosphorylation of Gpr1p, no correlation of phosphorylation/dephosphorylation and acetic acid hypersensitivity, caused by mutations within Gpr1p, was detected.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here