Quantum Logic in Dagger Kernel Categories
Author(s) -
Chris Heunen,
Bart Jacobs
Publication year - 2011
Publication title -
electronic notes in theoretical computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.242
H-Index - 60
ISSN - 1571-0661
DOI - 10.1016/j.entcs.2011.01.024
Subject(s) - adjunction , mathematics , quantum logic , pure mathematics , kernel (algebra) , algebra over a field , categorical variable , quantum , statistics , physics , quantum mechanics , qubit
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and and-then connectives are obtained, as adjoints, via the existential-pullback adjunction between fibres
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom