Test Case Generation for Mutation-based Testing of Timeliness
Author(s) -
Robert Nilsson,
Jeff Offutt,
Jonas Mellin
Publication year - 2006
Publication title -
electronic notes in theoretical computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.242
H-Index - 60
ISSN - 1571-0661
DOI - 10.1016/j.entcs.2006.10.010
Subject(s) - correctness , computer science , execution time , test case , dependency (uml) , scheduling (production processes) , random testing , distributed computing , real time computing , algorithm , artificial intelligence , machine learning , mathematical optimization , regression analysis , mathematics
Temporal correctness is crucial for real-time systems. Few methods exist to test temporal correctness and most methods used in practice are ad-hoc. A problem with testing real-time applications is the response-time dependency on the execution order of concurrent tasks. Execution order in turn depends on execution environment properties such as scheduling protocols, use of mutual exclusive resources as well as the point in time when stimuli is injected. Model based mutation testing has previously been proposed to determine the execution orders that need to be verified to increase confidence in timeliness. An effective way to automatically generate such test cases for dynamic real-time systems is still needed. This paper presents a method using heuristic-driven simulation to generate test cases
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom