Semantics for Local Computational Effects
Author(s) -
John Power
Publication year - 2006
Publication title -
electronic notes in theoretical computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.242
H-Index - 60
ISSN - 1571-0661
DOI - 10.1016/j.entcs.2006.04.018
Subject(s) - denotational semantics of the actor model , denotational semantics , mathematics , construct (python library) , countable set , universality (dynamical systems) , block (permutation group theory) , monad (category theory) , algebra over a field , semantics (computer science) , discrete mathematics , pure mathematics , operational semantics , computer science , combinatorics , functor , programming language , physics , quantum mechanics
tarting with Moggi's work on monads as refined to Lawvere theories, we give a general construct that extends denotational semantics for a global computational effect canonically to yield denotational semantics for a corresponding local computational effect. Our leading example yields a construction of the usual denotational semantics for local state from that for global state. Given any Lawvere theory L, possibly countable and possibly enriched, we first give a universal construction that extends L, hence the global operations and equations of a given effect, to incorporate worlds of arbitrary finite size. Then, making delicate use of the final comodel of the ordinary Lawvere theory L, we give a construct that uniformly allows us to model block, the universality of the final comodel yielding a universal property of the construct. We illustrate both the universal extension of L and the canonical construction of block by seeing how they work in the case of state
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom