Lifting Infinite Normal Form Definitions From Term Rewriting to Term Graph Rewriting
Author(s) -
Stefan Blom
Publication year - 2007
Publication title -
electronic notes in theoretical computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.242
H-Index - 60
ISSN - 1571-0661
DOI - 10.1016/j.entcs.2002.09.003
Subject(s) - rewriting , confluence , graph rewriting , term (time) , lambda calculus , graph , operational semantics , computer science , semantics (computer science) , mathematics , discrete mathematics , programming language , physics , quantum mechanics
nfinite normal forms are a way of giving semantics to non-terminating rewrite systems. The notion is a generalization of the Böhm tree in the lambda calculus. It was first introduced in [Ariola, Z. M. and S. Blom, Cyclic lambda calculi , in: Abadi and Ito [Abadi, M. and T. Ito, editors, “Theoretical Aspects of Computer Software,” Lecture Notes in Computer Science 1281 , Springer Verlag, 1997], pp. 77–106] to provide semantics for a lambda calculus on terms with letrec. In that paper infinite normal forms were defined directly on the graph rewrite system. In [Blom, S., “Term Graph Rewriting - syntax and semantics,” Ph.D. thesis, Vrije Universiteit Amsterdam (2001)] the framework was improved by defining the infinite normal form of a term graph using the infinite normal form on terms. This approach of lifting the definition makes the non-confluence problems introduced into term graph rewriting by substitution rules much easier to deal with. In this paper, we give a simplified presentation of the latter approach.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom