z-logo
open-access-imgOpen Access
Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation
Author(s) -
Julia E. Vidonish,
Kyriacos Zygourakis,
Caroline A. Masiello,
Gabriel Sabadell,
Pedro J. J. Alvarez
Publication year - 2016
Publication title -
engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.376
H-Index - 45
eISSN - 2096-0026
pISSN - 2095-8099
DOI - 10.1016/j.eng.2016.04.005
Subject(s) - environmental remediation , environmental science , sustainability , soil water , environmental engineering , waste management , environmental resource management , ecology , contamination , engineering , soil science , biology
Thermal treatment technologies hold an important niche in the remediation of hydrocarbon-contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainability of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom