Protection of the Medial Femoral Condyle Articular Cartilage During Drilling of the Femoral Tunnel Through the Accessory Medial Portal in Anatomic Anterior Cruciate Ligament Reconstruction
Author(s) -
Ashraf Abdelkafy
Publication year - 2012
Publication title -
arthroscopy techniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.66
H-Index - 31
ISSN - 2212-6287
DOI - 10.1016/j.eats.2012.05.008
Subject(s) - medicine , anterior cruciate ligament , drill , anatomy , medial meniscus , drill bit , femoral condyle , femur , cartilage , surgery , osteoarthritis , materials science , alternative medicine , pathology , metallurgy
Accurate positioning of the femoral tunnel in the native femoral anterior cruciate ligament (ACL) footprint requires drilling through an accessory medial portal (AMP). The AMP is located far medial and at a low level. Despite the benefits of drilling through the AMP, it is possible that the drill bit head will injure the articular cartilage of the medial femoral condyle as it slides along the guide pin to the femoral insertion of the ACL. Because more surgeons are now performing anatomic ACL reconstructions and shifting from transtibial drilling toward transportal drilling, the risk of this injury might be increasing, especially during the beginning of their learning curve. To avoid such injury, a bio-interference screw sheath is used. It is inserted through the AMP over the guide pin until it reaches near the medial wall of the lateral femoral condyle. The drill bit is inserted over the guide pin and through the bio-interference screw sheath. Using the bio-interference screw sheath not only protects the articular cartilage of the medial femoral condyle but also protects the medial meniscus, posterior cruciate ligament, and skin of the AMP from injury because of the close proximity of the drill bit head to these structures during transportal drilling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom