Machine Learning Uncovers Food- and Excipient-Drug Interactions
Author(s) -
Daniel Reker,
Yunhua Shi,
Ameya R. Kirtane,
Kaitlyn Hess,
Grace Zhong,
Evan Crane,
Chih-Hsin Lin,
Róbert Langer,
Giovanni Traverso
Publication year - 2020
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2020.02.094
Subject(s) - excipient , drug , business , chemistry , pharmacology , computer science , medicine
Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients-focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom