Plasma Membrane Furrows Control Plasticity of ER-PM Contacts
Author(s) -
Annabel Qi En Ng,
Amanda Yunn Ee Ng,
Dan Zhang
Publication year - 2020
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.12.098
Subject(s) - endoplasmic reticulum , plasticity , microbiology and biotechnology , membrane , biophysics , chemistry , biology , materials science , biochemistry , composite material
The plasma membrane (PM) forms extensive close junctions with the cortical endoplasmic reticulum (cER) in many cell types, ranging from yeast to mammals. How cells modulate structural plasticity of ER-PM contacts to accommodate space-demanding cortical events is largely unknown. Here, we report a role for eisosome-driven PM furrows in regulating ER-PM contact plasticity in fission yeast. We demonstrate that eisosome-coated PM invaginations function to stabilize local ER-PM contacts and attenuate cER remodeling dynamics through electrostatic Scs2-Pil1 interactions. We also identify divergent roles of ER-shaping proteins in controlling cER remodeling capacity and ER-PM contact plasticity. Furthermore, we show that eisosome organization is responsive to PM tension variations during active PM remodeling, which may enable adaptive control of ER-PM contact plasticity to potentially coordinate with space-demanding PM events. We thus propose a cellular strategy of modulating membrane contact plasticity by deploying sensory elements at contact sites.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom