Topological Structure and Robustness of the Lymph Node Conduit System
Author(s) -
Mario Novković,
Lucas Onder,
Gennady Bocharov,
Burkhard Ludewig
Publication year - 2020
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.12.070
Subject(s) - electrical conduit , robustness (evolution) , topology (electrical circuits) , lymph node , computer science , biology , medicine , mathematics , pathology , combinatorics , telecommunications , gene , biochemistry
Fibroblastic reticular cells (FRCs) form a road-like cellular network in lymph nodes (LNs) that provides essential chemotactic, survival, and regulatory signals for immune cells. While the topological characteristics of the FRC network have been elaborated, the network properties of the micro-tubular conduit system generated by FRCs, which drains lymph fluid through a pipeline-like system to distribute small molecules and antigens, has remained unexplored. Here, we quantify the crucial 3D morphometric parameters and determine the topological properties governing the structural organization of the intertwined networks. We find that the conduit system exhibits lesser small-worldness and lower resilience to perturbation compared to the FRC network, while the robust topological organization of both networks is maintained in a lymphotoxin-β-receptor-independent manner. Overall, the high-resolution topological analysis of the "roads-and-pipes" networks highlights essential parameters underlying the functional organization of LN micro-environments and will, hence, advance the development of multi-scale LN models.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom