RHON1 Co-transcriptionally Resolves R-Loops for Arabidopsis Chloroplast Genome Maintenance
Author(s) -
Zhuo Yang,
Mengmeng Li,
Qianwen Sun
Publication year - 2020
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.12.007
Subject(s) - biology , arabidopsis , rnase p , transcription (linguistics) , genome , helicase , microbiology and biotechnology , genetics , rna helicase a , rna , mutant , gene , linguistics , philosophy
Preventing transcription-replication head-on conflict (HO-TRC)-triggered R-loop formation is essential for maintaining genome integrity in bacteria, plants, and mammals. The R-loop eraser RNase H can efficiently relax HO-TRCs. However, it is not clear how organisms resist HO-TRC-triggered R-loops when RNase H proteins are deficient. By screening factors that may relieve R-loop accumulation in the Arabidopsis atrnh1c mutant, we find that overexpression of the R-loop helicase RHON1 can rescue the defects of aberrantly accumulated HO-TRC-triggered R-loops co-transcriptionally. In addition, we find that RHON1 interacts with and orchestrates the transcriptional activity of plastid-encoded RNA polymerases to release the conflicts between transcription and replication. Our study illustrates that organisms employ multiple mechanisms to escape HO-TRC-triggered R-loop accumulation and thus maintain genome integrity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom