Antibiotic Bacillomycin D Affects Iron Acquisition and Biofilm Formation in Bacillus velezensis through a Btr-Mediated FeuABC-Dependent Pathway
Author(s) -
Zhihui Xu,
Ines Mandić-Mulec,
Huihui Zhang,
Yan Liu,
Xinli Sun,
Haichao Feng,
Weibing Xun,
Nan Zhang,
Qirong Shen,
Ruifu Zhang
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.09.061
Subject(s) - biofilm , antibiotics , microbiology and biotechnology , chemistry , bacteria , biology , genetics
Bacillus spp. produce a wide range of secondary metabolites, including antibiotics, which have been well studied for their antibacterial properties but less so as signaling molecules. Previous results indicated that the lipopeptide bacillomycin D is a signal that promotes biofilm development of Bacillus velezensis SQR9. However, the mechanism behind this signaling is still unknown. Here, we show that bacillomycin D promotes biofilm development by promoting the acquisition of iron. Bacillomycin D promotes the transcription of the iron ABC transporter FeuABC by binding to its transcription factor, Btr. These actions increase intracellular iron concentration and activate the KinB-Spo0A-SinI-SinR-dependent synthesis of biofilm matrix components. We demonstrate that this strategy is beneficial for biofilm development and competition with the Pseudomonas fluorescens PF-5. Our results unravel an antibiotic-dependent signaling mechanism that links iron acquisition to biofilm development and ecological competition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom