z-logo
open-access-imgOpen Access
Injection of Antibodies against Immunodominant Epitopes Tunes Germinal Centers to Generate Broadly Neutralizing Antibodies
Author(s) -
Michael MeyerHermann
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.09.058
Subject(s) - epitope , germinal center , antibody , virology , affinity maturation , biology , immunodominance , computational biology , immunology , b cell
Broadly neutralizing antibodies are crucial for the control of many life-threatening viral infections like HIV, influenza, or hepatitis. Their induction is a prime goal in vaccine research. Using computer simulations, we identify strategies to promote the generation of broadly neutralizing antibodies in natural germinal center (GC) reactions. The simulations predict a feedback loop based on antibodies and memory B cells from previous GC reactions that promotes GCs to focus on new epitopes. Memory-derived or injected antibodies specific for immunodominant epitopes control epitope availability, suppress the participation of memory B cells in the GC reaction, and allow for the evolution of other B cells to affinity mature for hidden or rare epitopes. This defines a natural selection mechanism for GC B cells to concentrate on new epitopes rather than refine affinity to already-covered epitopes. This principle can be used for the design and testing of future therapies and vaccination protocols.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom