z-logo
open-access-imgOpen Access
Gain-of-Function Claims for Type-2-Diabetes-Associated Coding Variants in SLC16A11 Are Not Supported by the Experimental Data
Author(s) -
Eitan Hoch,
José C. Florez,
Eric S. Lander,
Suzanne B.R. Jacobs
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.09.021
Subject(s) - scopus , type 2 diabetes , zhàng , genetics , pathogenesis , haplotype , function (biology) , biology , phenotype , diabetes mellitus , gene , allele , medline , endocrinology , immunology , political science , biochemistry , law , china
Human genetic variants in SLC16A11 are associated with increased risk of type 2 diabetes (T2D). We previously identified two distinct mechanisms through which co-inherited T2D-risk coding and non-coding variants disrupt SLC16A11 expression and activity, thus implicating reduced SLC16A11 function as the disease-relevant direction of effect. In a recent publication, Zhao et al. (2019a) argue that human SLC16A11 coding variants confer gain of function, basing their conclusions on phenotypic changes observed following overexpression of mutant murine Slc16a11. However, data necessary to demonstrate gain-of-function activity are not reported. Furthermore, several fundamental flaws in their experimental system-including inaccurate modeling of the human variant haplotype and expression conditions that are not physiologically relevant-prevent conclusions about T2D-risk variant effects on human physiology. This Matters Arising paper is in response to Zhao et al. (2019a), published in Cell Reports. See also the response by Zhao et al. (2019b) in this issue of Cell Reports.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom