Integrative Transcriptomics Reveals Sexually Dimorphic Control of the Cholinergic/Neurokine Interface in Schizophrenia and Bipolar Disorder
Author(s) -
Sebastian Lobentanzer,
Geula Hanin,
Jochen Klein,
Hermona Soreq
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.09.017
Subject(s) - bipolar disorder , transcriptome , biology , schizophrenia (object oriented programming) , microrna , neuroscience , bioinformatics , computational biology , genetics , gene , medicine , gene expression , cognition , psychiatry
RNA sequencing analyses are often limited to identifying lowest p value transcripts, which does not address polygenic phenomena. To overcome this limitation, we developed an integrative approach that combines large-scale transcriptomic meta-analysis of patient brain tissues with single-cell sequencing data of CNS neurons, short RNA sequencing of human male- and female-originating cell lines, and connectomics of transcription factor and microRNA interactions with perturbed transcripts. We used this pipeline to analyze cortical transcripts of schizophrenia and bipolar disorder patients. Although these pathologies show massive transcriptional parallels, their clinically well-known sexual dimorphisms remain unexplained. Our method reveals the differences between afflicted men and women and identifies disease-affected pathways of cholinergic transmission and gp130-family neurokine controllers of immune function interlinked by microRNAs. This approach may open additional perspectives for seeking biomarkers and therapeutic targets in other transmitter systems and diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom