Serotonin Induces Structural Plasticity of Both Extrinsic Modulating and Intrinsic Mediating Circuits In Vitro in Aplysia Californica
Author(s) -
Chirag Upreti,
Edward Konstantinov,
Stefan R. Kassabov,
Craig H. Bailey,
Eric R. Kandel
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.08.016
Subject(s) - aplysia , serotonergic , neuroscience , biology , serotonin , biological neural network , sensory system , neural facilitation , neuron , synaptic plasticity , facilitation , excitatory postsynaptic potential , inhibitory postsynaptic potential , receptor , biochemistry
Long-term sensitization of the gill withdrawal reflex in Aplysia requires heterosynaptic, modulatory input that is mediated in part by the growth of new synaptic connections between sensory neurons and their follower cells (intrinsic mediating circuit). Whether modulatory interneurons (the extrinsic modulatory circuit) also display learning-related structural synaptic plasticity remains unknown. To test this idea, we added a bona fide serotonergic modulatory neuron, the metacerebral cell (MCC), to sensory-motor neuron co-cultures and examined the modulating presynaptic varicosities of MCCs before and after repeated pulses of serotonin (5-HT) that induced long-term facilitation (LTF). We observed robust growth of new serotonergic varicosities that were positive for serotonin and capable of synaptic recycling. Our findings demonstrate that, in addition to structural changes in the intrinsic mediating circuit, there are also significant learning-related structural changes in the extrinsic modulating circuit, and these changes might provide a cellular mechanism for savings and for spread of memory.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom