z-logo
open-access-imgOpen Access
Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization
Author(s) -
Heeyoun Park,
Taegon Kim,
Jinhyun Kim,
Yukio Yamamoto,
Keiko Tanaka
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.08.010
Subject(s) - cerebellum , neuroscience , neurotransmission , parallel fiber , neurotransmitter , blockade , excitatory postsynaptic potential , cerebellar cortex , biology , central nervous system , inhibitory postsynaptic potential , receptor , biochemistry
Neuronal activity is believed to be important for brain development; however, it remains unclear as to how spatiotemporal distributions of synaptic excitation contribute to neural network formation. Bifurcated axons of cerebellar granule cells, parallel fibers (PFs), are made in an orderly inside-out manner during postnatal development. In this study, we induced a blockade of neurotransmitter release from specific bundles of developing PFs and tested the effects of biased PF inputs on cerebellar development. The blockade of different layers of PFs at different developmental times results in varying degrees of abnormal cerebellar development. Furthermore, cerebellar network abnormalities are not restored when PF inputs are restored in adulthood and, hence, result in motor dysfunction. We thus conclude that spatiotemporally unbiased synaptic transmission from sequentially developed PFs is crucial for cerebellar network formation and motor function, supporting the idea that unbiased excitatory synaptic transmission is crucial for network formation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom