z-logo
open-access-imgOpen Access
Id4 Downstream of Notch2 Maintains Neural Stem Cell Quiescence in the Adult Hippocampus
Author(s) -
Runrui Zhang,
Marcelo Boareto,
Anna Engler,
Angeliki Louvi,
Claudio Giachino,
Dagmar Iber,
Verdon Taylor
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.07.014
Subject(s) - neurogenesis , neural stem cell , dentate gyrus , hippocampal formation , microbiology and biotechnology , biology , hippocampus , stem cell , mitosis , cell cycle , gene knockdown , neuroscience , cell , cell culture , genetics
Neural stem cells (NSCs) in the adult mouse hippocampal dentate gyrus (DG) are mostly quiescent, and only a few are in cell cycle at any point in time. DG NSCs become increasingly dormant with age and enter mitosis less frequently, which impinges on neurogenesis. How NSC inactivity is maintained is largely unknown. Here, we found that Id4 is a downstream target of Notch2 signaling and maintains DG NSC quiescence by blocking cell-cycle entry. Id4 expression is sufficient to promote DG NSC quiescence and Id4 knockdown rescues Notch2-induced inhibition of NSC proliferation. Id4 deletion activates NSC proliferation in the DG without evoking neuron generation, and overexpression increases NSC maintenance while promoting astrogliogenesis at the expense of neurogenesis. Together, our findings indicate that Id4 is a major effector of Notch2 signaling in NSCs and a Notch2-Id4 axis promotes NSC quiescence in the adult DG, uncoupling NSC activation from neuronal differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom