z-logo
open-access-imgOpen Access
Single-Cell RNA-Seq of the Developing Cardiac Outflow Tract Reveals Convergent Development of the Vascular Smooth Muscle Cells
Author(s) -
Xuanyu Liu,
Wen Chen,
Wenke Li,
Yan Li,
James R. Priest,
Bin Zhou,
Jikui Wang,
Zhou Zhou
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.06.092
Subject(s) - vascular smooth muscle , biology , transcriptome , cell , mesenchymal stem cell , microbiology and biotechnology , cell type , heart development , cell growth , genetics , bioinformatics , gene , embryonic stem cell , smooth muscle , gene expression , endocrinology
Cardiac outflow tract (OFT) is a major hotspot for congenital heart diseases. A thorough understanding of the cellular diversity, transitions, and regulatory networks of normal OFT development is essential to decipher the etiology of OFT malformations. We performed single-cell transcriptomic sequencing of 55,611 mouse OFT cells from three developmental stages that generally correspond to the early, middle, and late stages of OFT remodeling and septation. Known cellular transitions, such as endothelial-to-mesenchymal transition, have been recapitulated. In particular, we identified convergent development of the vascular smooth muscle cell (VSMC) lineage where intermediate cell subpopulations were found to be involved in either myocardial-to-VSMC trans-differentiation or mesenchymal-to-VSMC transition. Finally, we uncovered transcriptional regulators potentially governing cellular transitions. Our study provides a single-cell reference map of cell states for normal OFT development and paves the way for further studies of the etiology of OFT malformations at the single-cell level.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom