z-logo
open-access-imgOpen Access
Coelomocytes Regulate Starvation-Induced Fat Catabolism and Lifespan Extension through the Lipase LIPL-5 in Caenorhabditis elegans
Author(s) -
Alexia Buis,
Stéphanie Bellemin,
Jérôme Goudeau,
Léa Monnier,
Nicolas Loiseau,
Hervé Guillou,
Hugo Aguilaniu
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.06.064
Subject(s) - caenorhabditis elegans , starvation , catabolism , lipase , microbiology and biotechnology , biology , chemistry , enzyme , biochemistry , endocrinology , gene
Dietary restriction is known to extend the lifespan and reduce fat stores in most species tested to date, but the molecular mechanisms linking these events remain unclear. Here, we found that bacterial deprivation of Caenorhabditis elegans leads to lifespan extension with concomitant mobilization of fat stores. We find that LIPL-5 expression is induced by starvation and that the LIPL-5 lipase is present in coelomocyte cells and regulates fat catabolism and longevity during the bacterial deprivation response. Either LIPL-5 or coelomocyte deficiency prevents the rapid mobilization of intestinal triacylglycerol and enhanced lifespan extension in response to bacterial deprivation, whereas the combination of both defects has no additional or synergistic effect. Thus, the capacity to mobilize fat via LIPL-5 is directly linked to an animal's capacity to withstand long-term nutrient deprivation. Our data establish a role for LIPL-5 and coelomocytes in regulating fat consumption and lifespan extension upon DR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom