DNA Damage Activates TGF-β Signaling via ATM-c-Cbl-Mediated Stabilization of the Type II Receptor TβRII
Author(s) -
Yuzhen Li,
Yuan Liu,
Y. Jeffrey Chiang,
Fei Huang,
Yehua Li,
Xintong Li,
Yuanheng Ning,
Wenhao Zhang,
Haiteng Deng,
YeGuang Chen
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.06.045
Subject(s) - dna damage , dna , transforming growth factor , signal transduction , receptor , chemistry , microbiology and biotechnology , cancer research , biology , biochemistry
Activation of both the DNA damage response (DDR) and transforming growth factor β (TGF-β) signaling induces growth arrest of most cell types. However, it is unclear whether the DDR activates TGF-β signaling that in turn contributes to cell growth arrest. Here, we show that in response to DNA damage, ataxia telangiectasia mutated (ATM) stabilizes the TGF-β type II receptor (TβRII) and thus enhancement of TGF-β signaling. Mechanistically, ATM phosphorylates and stabilizes c-Cbl, which promotes TβRII neddylation and prevents its ubiquitination-dependent degradation. Consistently, DNA damage enhances the interaction among ATM, c-Cbl, and TβRII. The ATM-c-Cbl-TβRII axis plays a pivotal role in intestinal regeneration after X-ray-induced DNA damage in mouse models. Therefore, ATM not only mediates the canonical DDR pathway but also activates TGF-β signaling by stabilizing TβRII. The double brake system ensures full cell-cycle arrest, allowing efficient DNA damage repair and avoiding passage of the damaged genome to the daughter cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom